Chemical Senses

OXFORD UNIVERSITY PRESS

Individual Differences in Thresholds for Rotundone added to Red Wine

Journal:	Chemical Senses
Manuscript ID	Draft
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Gaby, Jessica; Penn State, Food Science Baker, Allison; Pennsylvania State University, Graduate Neuroscience Program Hayes, John; Pennsylvania State University, Food Science
Key Words:	detection thresholds, specific anosmia, psychophysics, olfaction

SCHOLARONE[™] Manuscripts

1		
2		
3	1	
4 5		
6	2	Individual Differences in Thresholds for Rotundone added to Red Wine
7		
8	3	
9		
10	4	Jessica M. Gaby ^{1, 2} , Allison N. Baker ^{1, 3} , John E. Hayes ^{1, 2,*}
11		
13	5	
14		
15	6	¹ Sensory Evaluation Center,
16		
17	7	² Department of Food Science, College of Agricultural Sciences,
18		
20	8	Graduate Program in Neuroscience,
21		
22	9	The Pennsylvania State University, University Park PA 16802
23		
24	10	
25		
20 27	11	
28		
29	12	
30		
31	13	
32		
33 34	14	
35	1 5	*Common on ding Authon
36	15	Corresponding Author:
37	10	Dr. John F. Havor
38	1/ 10	Department of Food Science
39	10	Pennsylvania State University
40 //1	20	220 Food Science Building
42	20	University Park DA 16800
43	21	Fmail: jeh40@psu.edu
44	22	Twitter: @TasteProf
45	23	Twitter. @ Tuster for
46	24	
4/ 10	25	Running Title: Specific anosmia for rotundone
40 49	25	Ruming The. Specific unosting for forundone
50	26	
51	20	
52	27	Key Words: detection thresholds: specific anosmia: psychophysics: olfaction
53	_,	
54 55	28	
55 56	-	
57		
58		
59		
60		

29 Abstract

Rotundone is an odor-active compound found in the skin of some grape varietals that contributes the pepperv note associated with wines such as Shiraz and Noiret. Previous research suggests there may be a specific anosmia for rotundone, as some individuals are unable to detect the presence of this compound even at high concentrations, despite having an otherwise normal sense of smell. However, subtle methodological differences limit the broader application of these results. Here, we estimate detection thresholds for rotundone added to red wine in a convenience sample of non-expert consumers in central Pennsylvania. We use a well-established standardized psychophysical method, and compare thresholds determined via orthonasal (n=56) and retronasal assessment (n=53). We found approximately 40% of our sample was anosmic to rotundone, and that ortho-and retronasal detection thresholds were nearly identical in a wine matrix. These results confirm a specific anosmia for rotundone within in a North American cohort, and suggest that peppery aroma experienced by sniffing a wine closely mirror the peppery flavor experienced when tasting the same wine. This suggests future research on rotundone perception may be able to rely on orthonasal assessment of samples. We also suggest additional work is warranted to uncover the genetic basis for this anosmia, in order to better evaluate potential regional differences in rotundone perception.

Page 3 of 22

Chemical Senses

Rotundone is a sesquiterpine with a peppery, spicy aroma. It is responsible, in part, for the characteristic aroma of black pepper. Commercially, it is highly pertinent to the wine industry, as it is also found in some red wines such as Australian Shiraz or Pennsylvania Noiret. Rotundone was first isolated a little over a decade ago (Wood et al., 2008), and subsequent work has shown rotundone is found in the skins of certain grape varietals (Caputi et al., 2011), including Shiraz/Syrah (Wood et al., 2008) and Noiret (Homich, Elias, Vanden Heuvel, & Centinari, 2017). The concentration of rotundone in the skins of these grapes can be altered via viticulture practices (Geffroy et al., 2019, 2014; Homich et al., 2017). Similarly, the amount of rotundone in wines made from these grapes can be controlled via oenology practices, including how long the wines are left to ferment on the skins (Caputi et al., 2011). Noiret grapes are a hybrid varietal that grows well in Pennsylvania, and anecdotally, these grapes are typically used to make sweet, low-rotundone wines for the local market. Conversely, in Australian Shiraz, the peppery aromas provided by rotundone can be highly desirable, as wines with a strong peppery character are able command premium prices in the marketplace.

Prior work on rotundone perception also suggests it may exhibit a *specific anosmia*in some percentage of the population: based on extant data, roughly 1 in 4 or 1 in 5
individuals are unable to perceive this peppery aroma (Geffroy et al., 2018; Wood et al.,
2008). A specific anosmia is the inability to smell a single odorant, despite an otherwise
normal sense of smell. In humans, the sense of smell relies on approximately 350 different
types of olfactory receptors (Zozulya, Echeverri, & Nguyen, 2001), each of which responds
to a specific class of molecules (reviewed in Buck & James, 2004), and odors arise from the

71	pattern of activation across these different receptors (see Silva Teixeira, Cerqueira, & Silva
72	Ferreira, 2016 for a review). The specific receptors in an individual's nose, as well as the
73	number of each type of receptor they express, are genetically determined, resulting in
74	individual differences in odor perception across the population (Olender et al., 2012;
75	Trimmer et al., 2017). That is, some individuals may lack a certain receptor type, and be
76	unable to smell molecules of the specific class to which that receptor responds, while
77	having an otherwise normal sense of smell. Several compounds have been identified as
78	having specific anosmias in the population (e.g., Amoore, Venstrom, & Davis, 1968; Lawless,
79	Antinone, Ledford, & Johnston, 1994); for a few of these (e.g., the smoky odor of guaiacol or
80	the floral note of beta-ionone), a specific allele responsible for the anosmia has been
81	identified (Jaeger et al., 2013; Mainland et al., 2014).
82	Because rotundone was isolated relatively recently and is typically present in only a
82 83	Because rotundone was isolated relatively recently and is typically present in only a few wine varieties, studies examining the perception of this compound have been quite
82 83 84	Because rotundone was isolated relatively recently and is typically present in only a few wine varieties, studies examining the perception of this compound have been quite limited. In the first study from Australia in 2008, one quarter to one fifth of participants
82 83 84 85	Because rotundone was isolated relatively recently and is typically present in only a few wine varieties, studies examining the perception of this compound have been quite limited. In the first study from Australia in 2008, one quarter to one fifth of participants were anosmic to the compound in red wine (9 of 47) and water (12 of 49). Among the
82 83 84 85 86	Because rotundone was isolated relatively recently and is typically present in only a few wine varieties, studies examining the perception of this compound have been quite limited. In the first study from Australia in 2008, one quarter to one fifth of participants were anosmic to the compound in red wine (9 of 47) and water (12 of 49). Among the responders, the orthonasal detection threshold was estimated to be 8 ng/L (in water) or 16
82 83 84 85 86 87	Because rotundone was isolated relatively recently and is typically present in only a few wine varieties, studies examining the perception of this compound have been quite limited. In the first study from Australia in 2008, one quarter to one fifth of participants were anosmic to the compound in red wine (9 of 47) and water (12 of 49). Among the responders, the orthonasal detection threshold was estimated to be 8 ng/L (in water) or 16 ng/L (in red wine), whereas anosmic individuals were unable to detect rotundone even at
82 83 84 85 86 87 88	Because rotundone was isolated relatively recently and is typically present in only a few wine varieties, studies examining the perception of this compound have been quite limited. In the first study from Australia in 2008, one quarter to one fifth of participants were anosmic to the compound in red wine (9 of 47) and water (12 of 49). Among the responders, the orthonasal detection threshold was estimated to be 8 ng/L (in water) or 16 ng/L (in red wine), whereas anosmic individuals were unable to detect rotundone even at concentrations as high as 4000 ng/L (Wood et al., 2008). This specific anosmia was
82 83 84 85 86 87 88 88	Because rotundone was isolated relatively recently and is typically present in only a few wine varieties, studies examining the perception of this compound have been quite limited. In the first study from Australia in 2008, one quarter to one fifth of participants were anosmic to the compound in red wine (9 of 47) and water (12 of 49). Among the responders, the orthonasal detection threshold was estimated to be 8 ng/L (in water) or 16 ng/L (in red wine), whereas anosmic individuals were unable to detect rotundone even at concentrations as high as 4000 ng/L (Wood et al., 2008). This specific anosmia was subsequently confirmed by a French study, which estimated ~31% of participants could
82 83 84 85 86 87 88 88 89 90	Because rotundone was isolated relatively recently and is typically present in only a few wine varieties, studies examining the perception of this compound have been quite limited. In the first study from Australia in 2008, one quarter to one fifth of participants were anosmic to the compound in red wine (9 of 47) and water (12 of 49). Among the responders, the orthonasal detection threshold was estimated to be 8 ng/L (in water) or 16 ng/L (in red wine), whereas anosmic individuals were unable to detect rotundone even at concentrations as high as 4000 ng/L (Wood et al., 2008). This specific anosmia was subsequently confirmed by a French study, which estimated ~31% of participants could not detect rotundone at 200 ng/L (i.e., a concentration well above threshold for
82 83 84 85 86 87 88 89 90 91	Because rotundone was isolated relatively recently and is typically present in only a few wine varieties, studies examining the perception of this compound have been quite limited. In the first study from Australia in 2008, one quarter to one fifth of participants were anosmic to the compound in red wine (9 of 47) and water (12 of 49). Among the responders, the orthonasal detection threshold was estimated to be 8 ng/L (in water) or 16 ng/L (in red wine), whereas anosmic individuals were unable to detect rotundone even at concentrations as high as 4000 ng/L (Wood et al., 2008). This specific anosmia was subsequently confirmed by a French study, which estimated ~31% of participants could not detect rotundone at 200 ng/L (i.e., a concentration well above threshold for responders) using both orthonasal and retronasal (in mouth) assessment (Geffroy et al.,
82 83 84 85 86 87 88 89 90 91 91	Because rotundone was isolated relatively recently and is typically present in only a few wine varieties, studies examining the perception of this compound have been quite limited. In the first study from Australia in 2008, one quarter to one fifth of participants were anosmic to the compound in red wine (9 of 47) and water (12 of 49). Among the responders, the orthonasal detection threshold was estimated to be 8 ng/L (in water) or 16 ng/L (in red wine), whereas anosmic individuals were unable to detect rotundone even at concentrations as high as 4000 ng/L (Wood et al., 2008). This specific anosmia was subsequently confirmed by a French study, which estimated ~31% of participants could not detect rotundone at 200 ng/L (i.e., a concentration well above threshold for responders) using both orthonasal and retronasal (in mouth) assessment (Geffroy et al., 2018).

Page 5 of 22

1

Chemical Senses

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
2/	
28	
29	
30 31	
31	
32	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
40	
47 70	
40 40	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

93 Given the popularity of Australian Shiraz wines that contain rotundone, we wondered whether there might be a market in Pennsylvania for wines containing moderate 94 95 to high-rotundone concentrations. Because perception of rotundone has not been 96 previously studied in a North American sample, and because the prior reports used 97 different methods to estimate thresholds, here we wished 1) to determine the detection threshold of rotundone in red wine in a convenience sample of wine consumers in 98 99 Pennsylvania, 2) to compare orthonasal and retronasal delivery on threshold estimates, and 3) to determine the percentage of our participants who would be anosmic for 100 101 rotundone. As we were preparing rotundone dilutions for use in this study, our team noted 102 that rotundone appeared to be less intense when sniffed orthonasally than when assessed 103 retronasally by swishing rotundone-spiked wine in the mouth. Given the discrepancy in 104 delivery method between the two prior studies (Geffroy et al., 2018; Wood et al., 2008), we directly compared ortho- and retronasal detection thresholds for rotundone (in red wine) 105 106 in participants drawn from the same population.

108 Methods.

107

109 Overview.

A total of 109 participants were recruited for a single test session. Upon arrival to the laboratory, they were randomized to one of two conditions in a pairwise fashion: roughly half of participants smelled (sniffed) the wine samples but did not taste them, and the other half were asked to taste the samples by mouth before spitting them out. Hereafter, for convenience and readability, these two conditions will be referred to as the *orthonasal* condition and the *retronasal* condition (with the caveat that the second condition is not

1 2	
- 3 4	1
5 6	1
7 8 9	1
9 10 11	1
12 13	1
14 15 16	1
10 17 18	1
19 20	1
21 22	1
23 24 25	1
26 27	1
28 29	1
30 31 32	1
33 34	1
35 36 27	1
37 38 39	1
40 41	1
42 43	1
44 45 46	1
47 48	1
49 50	1
51 52 53	1
55 55	1
56 57	
58 59 60	

116	solely retronasal in nature, as taste and chemesthestic inputs are also present when tasting
117	via the mouth). Also, we presented rotundone in red wine rather than water for increased
118	ecological relevance; that is, this compound is typically encountered in wine, and prior
119	work shows that threshold estimates differ substantially between water and wine (e.g.,
120	Perry & Hayes, 2016). Within a single visit, each participant was given 5 separate triads of
121	samples, for a total of 15 samples; no replicates were obtained. There was no overlap in
122	participants across conditions (i.e., participants only completed orthonasal assessment or
123	retronasal assessment, but not both). They provided informed consent for both the
124	screener to determine eligibility and the study itself, and all procedures were approved by
125	the Penn State University Institutional Review Board. Participants who visited the
126	laboratory received a small cash incentive for their time. Data were collected using
127	Compusense Cloud, Academic Consortium (Guelph, ONT).
128	

129 Participants

.30 Participants were recruited from an existing database of 1200+ individuals maintained by the Sensory Evaluation Center at Penn State. Study gualifications included the following: .31 .32 not pregnant or breastfeeding, nonsmoker, no food allergies, no history of choking or difficulty swallowing, no known smell or taste defect, no self-reported history of alcohol .33 .34 dependency or religious aversion to consuming alcohol. The orthonasal condition was completed by 56 participants (12 men, 44 women) while the retronasal condition was .35 completed by 53 participants (10 men, 40 women, and 3 not reported). The modal .36 respondent was female who self-reported as Caucasian, and was 25-30 years old (Table 1). .37 .38

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20 21
21
22
23
24
25
20
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Table 1. Age dis	tribution of s	ample.
	Sample	Proportion
	(n = 109)	rioportion
22-24	12	11.3%
25-30	36	34.0%
31-35	25	23.6%
36-40	17	16.0%
41-45	14	13.2%
46-50	0	0%
51-55	2	1.9%
Not reported	3	

141 Stimuli

139

140

Based on prior reports (i.e., a detection threshold of 16ng/L in red wine, and 31% of the 142 143 sample being unable to detect rotundone at a fixed concentration of 200ng/L in water), we selected a concentration range above and below these values. Because we wanted to 144 minimize fatigue, we used 5 concentrations of rotundone: 0.2, 2, 20, 200, and 2000 ng/L. 145 Stock solutions of rotundone in ethanol (95% USP grade ethanol, Koptek, King of Prussia 146 147 PA) were prepared and then added to 4L jugs of a neutral, fault free red wine (Carlo Rossi Burgundy, Carlo Rossi Vineyards, Modesto, CA) to create a single jug of each rotundone 148 149 concentration, which were used for all participants in both the orthonasal and retronasal testing groups. Rotundone was kindly provided by Dr. Markus Herderich and the 150

Page 8 of 22

Australian Wine Research Institute (Glen Osmond, South Australia). Concentrations were as prepared by the research team; no attempt was made to quantify these via instrumental chemical analysis.

Psychophysical Task Completed by the Participants

Detection threshold estimates were determined in accordance with ASTM Method E679-04 ("Standard Practice for Determination of Odor and Taste Thresholds By a Forced-Choice Ascending Concentration Series Method of Limits"). Briefly, participants completed a series of triangle tests, where every triad contained one spiked sample and two blank samples. The triads were presented in a fixed order so that the spiked sample increased in concentration across triads (to minimize adaptation and fatigue), and the order of samples within a triad was randomized. A break of 90-seconds was enforced between sets. Each sample consisted of 20 ml of wine (spike or control) in a standard ISO wine tasting glass. For each set (triad), participants were asked either to sniff (orthonasal) or taste (retronasal) the three samples in the order presented on the tray, and to identify which sample was the most different among the three (i.e., standard triangle test instructions). Participants in the retronasal condition who sampled the wine by mouth were also instructed to expectorate the wine after tasting. After each set, participants were asked to use water to cleanse their palates before the next trial. Participants received their first three triads on a single tray, then exchanged the tray after their third trial to receive their fourth and fifth triads. In total, testing took approximately 20 minutes.

1

Chemical Senses

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
51	
32	
33	
34	
35	
36	
37	
38	
20	
29	
40	
41	
42	
43	
44	
45	
46	
47	
77 10	
40	
49	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

174 Threshold Definition and Data Analysis

175 For the triangle test at each concentration, we recorded whether or not the participant got 176 the triangle test correct. We used these data to calculate the best estimate threshold (BET) 177 for each individual. To do so, we used the standard ASTM E679 decision rule, with two 178 minor modifications. Per the standard method, for most individuals, we defined their BET 179 as the geometric mean of the first concentration where the participant got all subsequent 180 levels correct, and the next concentration (level) down. For the two participants who were correct at the lowest concentration given, their threshold was calculated as the geometric 181 182 mean of the lowest concentration given (0.2 ng/L) and the next hypothetical concentration 183 down (i.e., 0.02 ng/L), again in accordance with the standard method. However, for four 184 participants (of 109), an alternative decision rule was used to define their individual BET. Specifically, these four individuals each got three lower concentrations in a row correct 185 before getting a higher concentration incorrect; because the probability of getting three in 186 187 a row correct by chance is quite low (3.7%), we reasoned these individuals may be sensitive to rotundone and that the incorrect answers at higher (and nominally easier) 188 concentrations were thus due to adaptation. For these four individuals, their BET was 189 190 instead calculated as the geometric mean of the first concentration where the participant began the run of three correct, and the next concentration (level) down. Finally for the non-191 192 responders (i.e., those who got the triangle test at the highest concentration presented wrong, and did not have a run of three lower concentrations correct), the BET was imputed 193 as the geometric mean of the top concentration (2000 ng/L) tested and the next theoretical 194 195 concentration that would have been tested (20,000 ng/L); this value was only used for 196 visualization in histograms and was not included in calculated means or any statistical

Page 10 of 22

2		
- 3 4	197	testing. Using the individual BETs for all of the responders, we then calculated a group
5 6	198	threshold estimate as a geometric mean. This was done by calculating the arithmetic mean
7 8 9	199	of the logged BETs, and then taking antilog of this value. To formally test for differences in
10 11	200	thresholds across the two conditions (orthonasal versus retronasal) in the responders, we
12 13	201	used an unpaired t-test on the logs of the individual BETs.
14 15 16	202	As an alternative method of analysis, we also used regression of the individual
17 18	203	responses at concentration to visualize and calculate group thresholds, using the graphical
19 20	204	method of Lawless (Lawless, 2010) as modified by Perry and colleagues (Perry, Byrnes,
21 22 23	205	Heymann, & Hayes, 2019). Briefly, individual responses at each concentration were coded
24 25	206	as 0 for incorrect and 1 for correct, and a regression line was fit to these points. The
26 27	207	resulting line was used to determine the logged concentration where 67% performance
28 29 30	208	was achieved by the group (i.e., halfway between perfect performance of one and chance
31 32	209	performance of one third). This value was then antilogged to estimate the group threshold
33 34	210	for that condition in ng/L. As discussed elsewhere (Perry et al., 2019), this approach
35 36 37	211	provides a threshold estimate that a) is adjusted for chance, b) does not vary with
38 39	212	participant number, and c) does not require specialized software.
40 41	213	
42 43		
44		
45		
46 47		
47 48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59 60		
00		

21
21
21
21
21
21
22
22
22
22
22
22
22
22
22
22
23
23
23
23
23

	214	Results.
	215	Across all participants, we observed substantial variation in individual thresholds (BETs),
	216	as shown in Figure 1. The proportions of anosmic individuals and responders were similar
	217	for both routes of odorant delivery: of 56 participants who smelled the samples, 22 were
	218	anosmic (i.e., 60.7% were responders), while of 54 participants who sampled the wines by
	219	mouth, 23 were anosmic (i.e., 57.4% were responders). After excluding anosmic
	220	individuals, the estimated threshold for the responders (i.e., the geometric mean of the
1	221	individual BETs) was 36.8 ng/L (± 10.7 SD) for the orthonasal condition and 73.4 ng/L
	222	(±21.2 SD) for the retronasal condition. Critically, these values were not significantly
	223	different from each other (t_{63} = 1.01; p = 0.30, on logged BETs), suggesting that route of
	224	delivery does not influence the detection of rotundone.
	225	
	226	From the graphical approach (Figure 2), we also see clear evidence of individuals
	227	who are able to detect rotundone (top), and of individuals who are anosmic (bottom). After
1	228	excluding those who are unable to detect the rotundone, it again appears that the route of
	229	delivery does not influence the detection of rotundone, as the estimated thresholds for both
	230	conditions are very similar (139.9 versus 145.5 ng/L). From the confidence interval of the
	231	graphical method, the lower and upper bounds of the orthonasal estimate were 38.9 and
	232	831.8 ng/L. For the retronasal group, the lower and upper bounds of the estimate were
	233	57.5 and 473.1 ng/L.
	234	

244 Discussion.

The main aims of this study were to determine detection thresholds for rotundone in red wine via both ortho- and retronasal assessment, and to use these thresholds to assess the percentage of participants in our sample who display a specific anosmia for rotundone. Using the ASTM method, the orthonasal detection threshold was 36.8 ng/L, while the retronasal detection threshold was 73.4 ng/L, and these values were not significantly different from one another. Using the graphical method, we found that detection thresholds were 139.9 and 145.5 ng/L for ortho-and retronasal methods respectively. Approximately 40% of our participants were anosmic to rotundone at the highest concentration (not counting those who exhibited evidence of adaptation).

Regarding the differences between the two methods for determining group threshold, Lawless previously suggested that the ASTM method might yield lower threshold values than the graphical method, particularly if some participants in the sample exhibited adaptation at higher concentrations, as a handful of our participants appeared to do. We prefer the graphical method for several reasons. First of all, it is less sensitive to issues of adaptation and one-off mistakes (i.e., incorrect answers) from panelists who are momentarily distracted (Lawless, 2010). Secondly, this method does not require hand-coding to determine individual BETs, which is both laborious and potentially subject to coding errors. Particularly for experiments with large numbers of participants and/or those employing many concentration levels, the graphical method has a clear advantage in this respect. Our threshold values using the graphical method are somewhat higher than the previously reported group mean orthonasal threshold of 16ng/L (Wood et al., 2008). Still, from the graphical method, the lower end of our confidence interval for the estimated

Page 15 of 22

Chemical Senses

267
268
269
270
271
272
273
274
275
276
277
278
270
279
280
281
282
283
284
285
286
287
288
289

60

267 orthonasal threshold was 38.9 ng/L, which is roughly similar to the values reported268 previously by Wood and colleagues.

There was a slightly lower percentage of responders in our sample than either of the two previously published studies. This could be due to several factors. It is possible that there are simply regional variations in the distributions of responders and non-responders, as we used a convenience sample drawn from the northeastern United States, while Wood et al. (2008) conducted their study in Australia, and Geffroy et al. (2018) tested participants in France. However, there are also methodological considerations. The participants in Wood and colleagues' study (2008) were employees or students at the Australian Wine Research Institute (AWRI). Presumably, these individuals are more likely than naïve Pennsylvanian consumers to be familiar with peppery wines, given both the popularity of Shiraz in the Australian market and their occupational exposure to wine and its sensory evaluation. Other prior work suggests that exposure to an odor can lower the detection threshold for that odorant (reviewed in Royet, Plailly, Saive, Veyrac, & Delon-Martin, 2013). As such, AWRI employees may have lower thresholds for rotundone due to more familiarity with the compound. Additionally, of course, it is also possible that employment at a wine research institute may be self-selecting for individuals with greater olfactory expertise or interest relative to the typical consumer (see discussion in Hayes & Pickering 2012).

The present study has some limitations that should be mentioned. Here. we only
used only a single set of concentrations, and only a single threshold estimate was
determined for each participant. Had we used an interleaved series of concentrations
across participants, or had participants assessed more concentration levels across multiple

2		
3 4	290	days, we may have gotten a slightly better fit for the regression line in our graphical
5 6	291	threshold method; similarly, additional test samples at intermediate concentrations may
7 8	292	have resulted in smaller confidence intervals. Further, our sample was unbalanced in terms
9 10 11	293	of participant gender; we did not have have any sex or gender specific hypotheses for this
12 13	294	compound, so our study was not powered to assess potential differences between men and
14 15	295	women. Still, given the potential for sex differences in olfactory sensitivity (e.g., (Doty &
16 17 18	296	Cameron, 2009)), future research should potentially revisit this question. Finally, due to
19 20	297	limitations on the project scope, we did not make any effort to confirm the rotundone
21 22	298	concentrations via chemical analysis; that said, we have no reason to believe the
23 24 25	299	concentrations delivered deviated from the amounts prepared by research staff. Indeed,
26 27	300	given the similarity between our orthonasal threshold estimation and that of Wood et al.
28 29	301	(2008), we are relatively confident that our levels were approximately correct.
30 31 32	302	
33 34	303	Conclusions
35 36	304	Our data confirms previous work suggesting that there is a specific anosmia for
37 38 39	305	rotundone, and extends it to a population not previously tested. We also found a slightly
40 41	306	greater proportion of non-responders – this could be due to either regional or ethnic
42 43	307	differences across populations, or methodological differences between our study and the
44 45 46	308	two prior studies examining the perception of rotundone in red wine (Geffroy et al., 2018;
47 48	309	Wood et al., 2008). Further, we found no differences between the detection thresholds for
49 50	310	rotundone in red wine using orthonasal and retronasal delivery. This is particularly
51 52 53	311	pertinent to the wine industry, as it suggests that the peppery odor obtained by sniffing a
54 55 56 57	312	wine may be a good representation of how a consumer can expect that wine to taste in the
58 59		

1

Page 17 of 22

Chemical Senses

glass. Additionally, there are clear implications for the experience of non-responders. While it is true that expectation strongly influences olfactory perception (Herz & Von Clef, 2001). unwitting rotundone-anosmic consumers who purchase a peppery wine may be disappointed to find that they are unable to detect a peppery flavor. Educating consumers about the possibility of having a specific anosmia might help to avoid this disappointment, which could be unfairly blamed on the vintner. Additional work is needed to see how disconfirmation of expections may influence consumer satisfaction. Separately, given the differences in proportions of anosmic participants across the three regions tested to date (Australia, France, and Northeastern USA), we suggest additional research is needed to deduce the genetic basis for this specific anosmia, which may allow more accurate assessment of the incidence of rotudone nonresponders around the globe. Such information is both biologically interesting and commercially relevant given the rapid growth of wine consumption in emerging markets like India and China.

2 3 4	327	Ackn
5 6	328	
7 8	329	of the
9 10 11	330	and st
12 13	331	thank
14 15 16	332	
10 17 18	333	Fund
19 20	334	This v
21 22 23	335	and R
24 25	336	discre
26 27 28	337	suppo
20 29 30	338	Food
31 32	339	Acces
33 34 35	340	or int
36 37	341	public
38 39	342	of Agr
40 41 42	343	
43 44	344	Confl
45 46 47	345	JMG a
48 49	346	consu
50 51	347	corpo
52 53 54	348	State
55 56	349	for stu
57 58		
59		

60

owledgments

The authors wish to thank Dr. Helene Hopfer for help with calculations and dilution wine samples, Dr. Alyssa Bakke for consultation on the study design, and the staff tudents in the Sensory Evaluation Center for their help in executing the test. We also our study participants for their time and participation.

ing

1

work was supported by a competitive grant from the Pennsylvania Wine Marketing esearch Board administered via the Pennsylvania Department of Agriculture, and etionary funds from the Pennsylvania State University. Dr. Hayes receives additional ort from the United States Department of Agriculture (USDA) via National Institute of and Agriculture (NIFA) and Hatch Act Appropriations [Project PEN04565 and sion #1002916]. None of these organizations had any role in study conception, design erpretation, or the decision to publish these data. The findings and conclusions in this cation are those of the authors, and do not represent the views of the U.S. Department riculture, and do not represent any US Government determination, position or policy.

lict of interest

nd ANB have no potential conflicts to report. JEH has received speaking, travel, and llting fees from nonprofit organizations, federal agencies, commodity boards, and rate clients in the food industry. Additionally, the Sensory Evaluation Center at Penn routinely conducts taste tests for industrial clients to facilitate experiential learning udents.

Page 19 of 22

1

60

Chemical Senses

2 3 4	350	References
5 6	351	Amoore, J. E., Venstrom, D., & Davis, A. R. (1968). Measurement of specific anosmia.
7 8 9	352	Perceptual and Motor Skills, 26, 143–164.
10 11	353	Buck, L. B., & James, W. P. T. (2004). Olfactory receptors and odor coding in mammals.
12 13	354	Nutrition Reviews, 62(11 SUPPL.). https://doi.org/10.1301/nr.2004.nov.S184-S188
14 15 16	355	Caputi, L., Carlin, S., Ghiglieno, I., Stefanini, M., Valenti, L., Vrhovsek, U., & Mattivi, F. (2011).
17 18	356	Relationship of changes in rotundone content during grape ripening and winemaking
19 20	357	to manipulation of the "peppery" character of wine. Journal of Agricultural and Food
21 22 23	358	<i>Chemistry</i> , 59(10), 5565–5571. https://doi.org/10.1021/jf200786u
24 25	359	Doty, R. L., & Cameron, E. L. (2009). Sex differences and reproductive hormone influences
26 27 28	360	on human odor perception. <i>Physiology and Behavior</i> , 97(2), 213–228.
28 29 30	361	https://doi.org/10.1016/j.physbeh.2009.02.032
31 32	362	Geffroy, O., Calzi, M. L., Ibfelt, K., Yobrégat, O., Feilhès, C., & Dufourcq, T. (2019). Using
33 34 35	363	common viticultural practices to modulate the rotundone and 3-isobutyl-2-
36 37	364	methoxypyrazine composition of Vitis vinifera L . cv . Fer red wines from a temperate
38 39	365	climate wine region with very cool nights ABSTRACT, (October), 581–595.
40 41 42	366	https://doi.org/10.20870/oeno-one.2019.53.3.2459
43 44	367	Geffroy, O., Descôtes, J., Serrano, E., Li Calzi, M., Dagan, L., & Schneider, R. (2018). Can a
45 46	368	certain concentration of rotundone be undesirable in Duras red wine? A study to
47 48 49	369	estimate a consumer rejection threshold for the pepper aroma compound. Australian
50 51	370	Journal of Grape and Wine Research, 24(1), 88–95.
52 53	371	https://doi.org/10.1111/ajgw.12299
54 55 56 57 58 59	372	Geffroy, O., Dufourcq, T., Carcenac, D., Siebert, T., Herderich, M., & Serrano, E. (2014). Effect

1 ว		
2 3 4	373	of ripeness and viticultural techniques on the rotundone concentration in red wine
5 6 7	374	made from Vitis vinifera L. cv. Duras. Australian Journal of Grape and Wine Research,
7 8 9	375	<i>20</i> (3), 401–408. https://doi.org/10.1111/ajgw.12084
10 11	376	Herz, R. S., & Von Clef, J. (2001). The influence of verbal labeling on the perception of odors:
12 13 14	377	Evidence for olfactory illusions? <i>Perception</i> , <i>30</i> (3), 381–391.
15 16	378	https://doi.org/10.1068/p3179
17 18	379	Homich, L. J., Elias, R. J., Vanden Heuvel, J. E., & Centinari, M. (2017). Impact of Fruit-Zone
19 20 21	380	Leaf Removal on Rotundone Concentration in Noiret. American Journal of Enology and
22 23	381	<i>Viticulture</i> . https://doi.org/10.5344/ajev.2017.16106
24 25 26	382	Jaeger, S. R., Mcrae, J. F., Bava, C. M., Beresford, M. K., Hunter, D., Jia, Y., Newcomb, R. D.
26 27 28	383	(2013). Report A Mendelian Trait for Olfactory Sensitivity Affects Odor Experience and
29 30	384	Food Selection. <i>Current Biology</i> , 23, 1601–1605.
31 32 33	385	https://doi.org/10.1016/j.cub.2013.07.030
33 34 35	386	Lawless, H. T. (2010). A simple alternative analysis for threshold data determined by
36 37	387	ascending forced-choice methods of limits. <i>Journal of Sensory Studies</i> , 25(3), 332–346.
38 39 40	388	https://doi.org/10.1111/j.1745-459X.2009.00262.x
41 42	389	Lawless, H. T., Antinone, M. J., Ledford, R. A., & Johnston, M. (1994). Olfactory
43 44	390	responsiveness to diacetyl. <i>Journal of Sensory Studies</i> , 9(1), 47–56.
45 46 47	391	https://doi.org/10.1111/j.1745-459X.1994.tb00229.x
48 49	392	Mainland, J. D., Keller, A., Li, Y. R., Zhou, T., Trimmer, C., Snyder, L. L., Matsunami, H.
50 51 52	393	(2014). The Missense of Smell: Functional Variability in the Human Odorant Receptor
52 53 54	394	Repertoire. <i>Nature Neuroscience</i> , 17(1), 114–120.
55 56 57 58 59 60	395	https://doi.org/10.1038/nn.3598.The

Page 21 of 22

1

2 3	206	Olender T. Wessel, S. M. Viewent M. Khen M. Ben Asher F. Bewes, A. Janset D.			
4	396	Olender, T., Waszak, S. M., Vlavant, M., Knen, M., Ben-Asner, E., Reyes, A., Lancet, D.			
5 6 7	397	(2012). Personal receptor repertoires: olfaction as a model. <i>BMC Genomics</i> , 13(1).			
7 8 9	398	https://doi.org/10.1186/1471-2164-13-414			
10 11	399	Perry, D. M., Byrnes, N. K., Heymann, H., & Hayes, J. E. (2019). Rejection of labrusca-type			
12 13	400	aromas in wine differs by wine expertise and geographic region. Food Quality and			
14 15 16	401	<i>Preference</i> , 74(September 2016), 147–154.			
17 18	402	https://doi.org/10.1016/j.foodqual.2019.01.018			
19 20	403	Perry, D. M., & Hayes, J. E. (2016). Effects of Matrix Composition on Detection Threshold			
21 22 23	404	Estimates for Methyl Anthranilate. https://doi.org/10.3390/foods5020035			
24 25	405	Royet, J. P., Plailly, J., Saive, A. L., Veyrac, A., & Delon-Martin, C. (2013). The impact of			
26 27 20	406	expertise in olfaction. <i>Frontiers in Psychology</i> , 4(DEC), 1–11.			
28 29 30	407	https://doi.org/10.3389/fpsyg.2013.00928			
31 32	408	Silva Teixeira, C. S., Cerqueira, N. M. F. S. A., & Silva Ferreira, A. C. (2016). Unravelling the			
33 34 25	409	olfactory sense: From the Gene to Odor Perception. <i>Chemical Senses</i> , 41(2), 105–121.			
35 36 37	410	https://doi.org/10.1093/chemse/bjv075			
38 39	411	Trimmer, C., Keller, A., Murphy, N. R., Snyder, L. L., Willer, J. R., Nagai, M., Mainland, J. D.			
40 41 42	412	(2017). Genetic variation across the human olfactory receptor repertoire alters odor			
42 43 44	413	perception, 1–22. https://doi.org/10.1101/212431			
45 46	414	Wood, C., Siebert, T. E., Parker, M., Capone, D. L., Elsey, G. M., Pollnitz, A. P., Herderich, M.			
47 48 49	415	J. (2008). From wine to pepper: Rotundone, an obscure sesquiterpene, is a potent			
50 51	416	spicy aroma compound. J of Agricultural and Food Chemistry, 56(10), 3738–3744.			
52 53	417	Zozulya, S., Echeverri, F., & Nguyen, T. (2001). The human olfactory receptor repertoire.			
54 55 56 57 58 59	418	Genome Biology, 2(6), 1–12.			

|--|

	Sample (n = 104*)	Prevalence	
How often do you consume wine?			
Never	3	2.88%	
A few times a year	15	14.42%	
Once a month	13	12.5%	
2-3 times a month	35	33.65%	
Once a week	19	18.27%	
2-3 times a week	17	16.35%	
4-6 times a week	1	0.96%	
Every day	1	0.96%	
How often do you consume beer?			
Never	10	9.61%	
A few times a year	14	13.46%	
Once a month	10	9.61%	
2-3 times a month	30	28.85%	
Once a week 🔇	21	20.19%	
2-3 times a week	15	14.42%	
4-6 times a week	4	3.85%	
Every day	0	0%	
How often do you consume liquor	straight?		
Never	13	12.26%	
A few times a year	41	39.42%	
Once a month	18	17.31%	
2-3 times a month	17	16.35%	
Once a week	6	5.77%	
2-3 times a week	7	6.73%	
4-6 times a week	2	1.89%	
Every day	0	0%	
How often do you consume mixed drinks?			
Never	4	3.85%	
A few times a year	38	36.54%	
Once a month	21	20.19%	
2-3 times a month	26	25%	
Once a week	7	6.73%	
2-3 times a week	7	6.73%	
4-6 times a week	0	0%	
Every day	1	0.96%	